Friday, November 16, 2018

Neurotransmitters

Definition

Neurotransmitters are chemicals located and released in the brain to allow an impulse from one nerve cell to pass to another nerve cell.

Neurotransmitters 772

Description

There are approximately 50 neurotransmitters identified. There are billions of nerve cells located in the brain, which do not directly touch each other. Nerve cells communicate messages by secreting neurotransmitters. Neurotransmitters can excite or inhibit neurons (nerve cells). Some common neurotransmitters are acetylcholine, norepinephrine, dopamine, serotonin and gamma aminobutyric acid (GABA). Acetylcholine and norepinephrine are excitatory neurotransmitters while dopamine, serotonin, and GABA are inhibitory. Each neurotransmitter can directly or indirectly influence neurons in a specific portion of the brain, thereby affecting behavior.

Mechanism of impulse transmission

A nerve impulse travels through a nerve in a long, slender cellular structure called an axon, and it eventually reaches a structure called the presynaptic membrane, which contains neurotransmitters to be released in a free space called the synaptic cleft. Freely flowing neurotransmitter molecules are picked up by receptors (structures that appear on cellular surfaces that pick up molecules that fit into them like a "lock and key") located
in a structure called the postsynaptic membrane of another nearby neuron. Once the neurotransmitter is picked up by receptors in the postsynaptic membrane, the molecule is internalized in the neuron and the impulse continues. This process of nerve cell communication is extremely rapid

Once the neurotransmitter is released from the neurotransmitter vesicles of the presynaptic membrane, the normal movement of molecules should be directed to receptor sites located on the postsynaptic membrane. However, in certain disease states, the flow of the neurotransmitter is defective. For example, in depression, the flow of the inhibitory neurotransmitter serotonin is defective, and molecules flow back to their originating site (the presynaptic membrane) instead of to receptors on the postsynaptic membrane that will transmit the impulse to a nearby neuron.
The mechanism of action and localization of neurotransmitters in the brain has provided valuable information concerning the cause of many mental disorders, including clinical depression and chemical dependency, and in researching medications that allow normal flow and movement of neurotransmitter molecules.

Neurotransmitters are chemicals that transmit messages from one nerve cell (neuron) to another. The nerve impulse travels from the first nerve cell through the axon—a single smooth body arising from the nerve cell— to the axon terminal and the synaptic knobs. Each synaptic knob communicates with a dendrite or cell body of another neuron, and the synaptic knobs contain neurovesicles that store and release neurotransmitters. The synapse lies between the synaptic knob and the next cell. For the impulse to continue traveling across the synapse to reach the next cell, the synaptic knobs release the neurotransmitter into that space, and the next nerve cell is stimulated to pick up the impulse and continue it.


Neurotransmitters are chemicals that transmit messages from one nerve cell (neuron) to another. The nerve impulse travels from the first nerve cell through the axon—a single smooth body arising from the nerve cell— to the axon terminal and the synaptic knobs. Each synaptic knob communicates with a dendrite or cell body of another neuron, and the synaptic knobs contain neurovesicles that store and release neurotransmitters. The synapse lies between the synaptic knob and the next cell. For the impulse to continue traveling across the synapse to reach the next cell, the synaptic knobs release the neurotransmitter into that space, and the next nerve cell is stimulated to pick up the impulse and continue it.

Neurotransmitters, mental disorders, and medications

Schizophrenia

Impairment of dopamine-containing neurons in the brain is implicated in schizophrenia , a mental disease marked by disturbances in thinking and emotional reactions. Medications that block dopamine receptors in the brain, such as chlorpromazine and clozapine , have been used to alleviate the symptoms and help patients return to a normal social setting.

Depression

In depression, which afflicts about 3.5% of the population, there appears to be abnormal excess or inhibition of signals that control mood, thoughts, pain, and other sensations. Depression is treated with antidepressants that affect norepinephrine and serotonin in the brain. The antidepressants help correct the abnormal neurotransmitter activity. A newer drug, fluoxetine (Prozac), is a selective serotonin reuptake inhibitor (SSRI) that appears to establish the level of serotonin required to function at a normal level. As the name implies, the drug inhibits the re-uptake of serotonin neurotransmitter from synaptic gaps, thus increasing neurotransmitter action. In the brain, then, the increased serotonin activity alleviates depressive symptoms.

Alzheimer's disease

Alzheimer's disease , which affects an estimated four million Americans, is characterized by memory loss and the eventual inability for self-care. The disease seems to be caused by a loss of cells that secrete acetylcholine in the basal forebrain (region of brain that is the control center for sensory and associative information processing and motor activities). Some medications to alleviate the symptoms have been developed, but presently there is no known treatment for the disease.

Generalized anxiety disorder

People with generalized anxiety disorder (GAD) experience excessive worry that causes problems at work and in the maintenance of daily responsibilities. Evidence suggests that GAD involves several neurotransmitter systems in the brain, including norepinephrine and serotonin.

Attention-deficit/hyperactivity disorder

People affected by attention-deficit/hyperactivity disorder (ADHD) experience difficulties in the areas of attention, overactivity, impulse control, and distractibility. Research shows that dopamine and norepinephrine imbalances are strongly implicated in causing ADHD.

Others

Substantial research evidence also suggests a correlation of neurotransmitter imbalance with disorders such as borderline personality disorders schizotypal personality disorder avoidant personality disorder social phobia histrionic personality disorder , and somatisation disorder .


No comments: